Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.09.507363

ABSTRACT

Severe acute respiratory distress syndrome (ARDS) during SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infection, manifests as uncontrolled lung inflammation and systemic thrombosis with high mortality. Anti-viral drugs and monoclonal antibodies can reduce COVID-19 severity if administered in the early viremic phase, but treatments for later stage immuno-thrombotic syndrome and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases during thrombotic, thrombolytic and immune responses. The myxoma poxvirus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated coagulation and complement protease pathways as part of a self-defense strategy to combat viral clearance by the innate immune system. When purified and utilized as an anti-immune therapeutic, Serp-1 is effective as an anti-inflammatory drug in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 (PEGSerp-1) as a therapy for immuno-thrombotic complications during ARDS. Treatment with PEGSerp-1 in two distinct mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved clinical outcomes. PEGSerp-1 significantly reduced M1 macrophage invasion in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR) and complement membrane attack complex (MAC). Sequential changes in urokinase-type plasminogen activator receptor (uPAR) and serpin gene expression were observed in lung and heart with PEGSerp-1 treatment. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for treatment of severe viral ARDS with additional potential to reduce late SARS-CoV-2 complications related to immune-thrombotic events that persist during long COVID. Significance: Severe acute respiratory distress syndrome (ARDS) in SARS-CoV-2 infection manifests as uncontrolled tissue inflammation and systemic thrombosis with high mortality. Anti-viral drugs and monoclonal antibodies reduce COVID-19 severity if administered early, but treatments for later stage immuno-thrombosis are limited. Serine protease inhibitors (SERPINS) regulate thrombotic, thrombolytic and complement pathways. We investigate here systemic treatment with purified poxvirus-derived PEGSerp-1 as a therapeutic for immuno-thrombotic complications in viral ARDS. PEGSerp-1 treatment in two mouse-adapted SARS-CoV-2 models (C57Bl/6 and BALB/c) significantly reduced lung and heart inflammation and improved clinical outcomes, with sequential changes in thrombolytic (uPAR) and complement expression. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for immune-thrombotic complications in severe viral ARDS and has potential benefit for long COVID.


Subject(s)
Coronavirus Infections , Respiratory Distress Syndrome , Myxoma , Pneumonia , Severe Acute Respiratory Syndrome , Vasculitis , Acquired Immunodeficiency Syndrome , Thrombosis , Blood Coagulation Disorders, Inherited , COVID-19 , Inflammation
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.06.471483

ABSTRACT

The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .

SELECTION OF CITATIONS
SEARCH DETAIL